Glossary of Terms

Aluminium
Aluminium, used for deep p-diffusions. Not popular in VLSI and ULSI. Also a common unintentional impurity
Aluminum
Aluminum, used for deep p-diffusions. Not popular in VLSI and ULSI. Also a common unintentional impurity
Antimony
Antimony is a n-type dopant. It has a small diffusion coefficient. Used for buried layers. Has diffusivity similar to arsenic, is used as its alternative. Its diffusion is virtually purely substitutional, with no interstitials, so it is free of anomalous effects. For this superior property, it is sometimes used in VLSI instead of arsenic. Heavy doping with antimony is important for power devices. Heavily antimony-doped silicon has lower concentration of oxygen impurities; minimal autodoping effects make it suitable for epitaxial substrates.
Arsenic
Arsenic is a n-type dopant. Its slower diffusion allows using it for diffused junctions. Used for buried layers. Has similar atomic radius to silicon, high concentrations can be achieved. Its diffusivity is about a tenth of phosphorus or boron, so is used where the dopant should stay in place during subsequent thermal processing. Useful for shallow diffusions where well-controlled abrupt boundary is desired. Preferred dopant in VLSI circuits. Preferred dopant in low resistivity ranges.
Bismuth
Bismuth is a promising dopant for long-wavelength infrared photoconduction silicon detectors, a viable n-type alternative to the p-type gallium-doped material.
Boron
Boron is a p-type dopant. Its diffusion rate allows easy control of junction depths. Common in CMOS technology. Can be added by diffusion of diborane gas. The only acceptor with sufficient solubility for efficient emitters in transistors and other applications requiring extremely high dopant concentrations. Boron diffuses about as fast as phosphorus.
Diameter
Silicon wafers are available in a variety of diameters from 25.4 mm (1 inch) to 300 mm (11.8 inches). Semiconductor fabrication plants (also known as fabs) are defined by the diameter of wafers that they are tooled to produce. 1-inch (25 mm). 2-inch (51 mm). 3-inch (76 mm). 4-inch (100 mm). 5-inch (130 mm) or 125 mm (4.9 inch). 150 mm (5.9 inch, usually referred to as 6 inch). 200 mm (7.9 inch, usually referred to as 8 inch). 300 mm (11.8 inch, usually referred to as 12 inch). 450 mm (17.7 inch).
Dopant
A dopant, also called a doping agent, is a trace impurity element that is inserted into a substance (in very low concentrations) to alter the electrical or optical properties of the substance. In the case of crystalline substances, the atoms of the dopant very commonly take the place of elements that were in the crystal lattice of the base material. The crystalline materials are frequently either crystals of a semiconductor such as silicon and germanium for use in solid-state electronics, or transparent crystals for use in the production of various laser types; however, in some cases of the latter, noncrystalline substances such as glass can also be doped with impurities.
Doping
Semiconductor doping is the process that changes an intrinsic semiconductor to an extrinsic semiconductor. During doping, impurity atoms are introduced to an intrinsic semiconductor. Impurity atoms are atoms of a different element than the atoms of the intrinsic semiconductor. Impurity atoms act as either donors or acceptors to the intrinsic semiconductor, changing the electron and hole concentrations of the semiconductor. Impurity atoms are classified as donor or acceptor atoms based on the effect they have on the intrinsic semiconductor.
Epitaxial Wafer
An epitaxial wafer (also called epi wafer, epi-wafer, or epiwafer) is a wafer of semiconducting material made by epitaxial growth (epitaxy) for use in photonics, microelectronics or photovoltaics. The epi layer may be the same material as the substrate, typically monocrystaline silicon, or it may be a more exotic material with specific desirable qualities.
Etching
Wafers are cleaned with weak acids to remove unwanted particles, or repair damage caused during the sawing process. When used for solar cells, the wafers are textured to create a rough surface to increase their efficiency. The generated PSG (phosphosilicate glass) is removed from the edge of the wafer in the etching.
Extrinsic Semiconductor
An extrinsic semiconductor is one that has been doped, that is, into which a doping agent has been introduced, giving it different electrical properties than the intrinsic (pure) semiconductor. This doping involves adding dopant atoms to an intrinsic semiconductor, which changes the electron and hole carrier concentrations of the semiconductor at thermal equilibrium, the temperature at which two adjacent substances exchange no heat energy. Dominant carrier concentrations in an extrinsic semiconductor classify it as either an n-type or p-type semiconductor. The electrical properties of extrinsic semiconductors make them essential components of many electronic devices.
GaAs
Gallium arsenide (GaAs) is a compound of the elements gallium and arsenic. It is a III-V direct bandgap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows. GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors including indium gallium arsenide, aluminum gallium arsenide and others.
Gallium
Gallium is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 8-14um atmospheric window. Gallium-doped silicon is also promising for solar cells, due to its long minority carrier lifetime with no lifetime degradation; as such it is gaining importance as a replacement of boron doped substrates for solar cell applications.
Gallium Arsenide
Gallium arsenide (GaAs) is a compound of the elements gallium and arsenic. It is a III-V direct bandgap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows. GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors including indium gallium arsenide, aluminum gallium arsenide and others.
Indium
Indium is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 3-5 um atmospheric window.
Indium Phosphide
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.
InP
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.
Intrinsic Semiconductor
An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may even be the case after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.
Lithium
Lithium is used for doping silicon for radiation hardened solar cells. The lithium presence anneals defects in the lattice produced by protons and neutrons. Lithium can be introduced to boron-doped p+ silicon, in amounts low enough to maintain the p character of the material, or in large enough amount to counterdope it to low-resistivity n type.
N-type
N-type semiconductors have a larger electron concentration than hole concentration. The term n-type comes from the negative charge of the electron. In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. N-type semiconductors are created by doping an intrinsic semiconductor with donor impurities (or doping a p-type semiconductor as done in the making of CMOS chips). A common dopant for n-type silicon is phosphorus. In an n-type semiconductor, the Fermi level is greater than that of the intrinsic semiconductor and lies closer to the conduction band than the valence band.
Nitrogen
Nitrogen is important for growing defect-free silicon crystal. Improves mechanical strength of the lattice, increases bulk microdefect generation, suppresses vacancy agglomeration.
Orientation
Wafers are grown from crystal having a regular crystal structure, with silicon having a diamond cubic structure with a lattice spacing of (0.5430710 nm). When cut into wafers, the surface is aligned in one of several relative directions known as crystal orientations. Orientation is defined by the Miller index with (100) or (111) faces being the most common for silicon.
P-type
As opposed to n-type semiconductors, p-type semiconductors have a larger hole concentration than electron concentration. The term p-type refers to the positive charge of the hole. In p-type semiconductors, holes are the majority carriers and electrons are the minority carriers. P-type semiconductors are created by doping an intrinsic semiconductor with acceptor impurities (or doping an n-type semiconductor). A common p-type dopant for silicon is boron. For p-type semiconductors the Fermi level is below the intrinsic Fermi level and lies closer to the valence band than the conduction band.
Phosphorus
Phosphorus is a n-type dopant. It diffuses fast, so is usually used for bulk doping, or for well formation. Used in solar cells. Can be added by diffusion of phosphine gas. Bulk doping can be achieved by nuclear transmutation, by irradiation of pure silicon with neutrons in a nuclear reactor. Phosphorus also traps gold atoms, which otherwise quickly diffuse through silicon and act as recombination centers.
SEMI font
SEMI Font, also known as SEMI OCR font, is used for marking silicon wafers in the semi-conductor industry. The SEMI font character set include 26 uppercase letters, 10 numbers, dash and period. Their shapes and dimensions are specified by SEMI M12/M13 standard, which was approved by Global Traceability Committee and North American Traceability Committee. When used in single-density mode, laser scribers use a dot matrix of 5 dots horizontal and 9 dots vertical, in double-density mode, the matrix is 10 dots horizontal and 18 dots vertical.
Semiconductor
Semiconductors are crystalline or amorphous solids with distinct electrical characteristics. They are of high electrical resistance - higher than typical resistance materials, but still of much lower resistance than insulators. Their resistance decreases as their temperature increases, which is behavior opposite to that of a metal. Finally, their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities (doping) into the crystal structure, which lowers its resistance but also permits the creation of semiconductor junctions between differently-doped regions of the extrinsic semiconductor crystal. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics.
Substrate
Substrate (also called a wafer) is a solid (usually planar) substance onto which a layer of another substance is applied, and to which that second substance adheres. In solid-state electronics, this term refers to a thin slice of material such as silicon, silicon dioxide, aluminum oxide, sapphire, germanium, gallium arsenide (GaAs), an alloy of silicon and germanium, or indium phosphide (InP). These serve as the foundation upon which electronic devices such as transistors, diodes, and especially integrated circuits (ICs) are deposited.
Wafer
A wafer, also called a slice or substrate, is a thin slice of semiconductor material, such as a crystalline silicon, used in electronics for the fabrication of integrated circuits and in photovoltaics for conventional, wafer-based solar cells. The wafer serves as the substrate for microelectronic devices built in and over the wafer and undergoes many microfabrication process steps such as doping or ion implantation, etching, deposition of various materials, and photolithographic patterning. Finally the individual microcircuits are separated (dicing) and packaged.